HOME - ROMANIAN
Friday, September 24, 2021   00:56 EET
 

Project

 

ND10 bodies dynamic switch in viral chromatin remodeling during early hrHPV infection

Project Code: PN-III-P1-1.1-TE-2019-1759

Acronym: NOVO

Programme: Human Resources- Research projects to stimulate the establishment of young independent research teams - TE

Financier: UEFISCDI

Project duration: 24 months (septembrie 2020 –august 2022)

Coordinating Institution: Stefan S. Nicolau Institute of Virology (www.virology.ro)

Address: 285Mihai Bravu Ave., sector 3, Bucharest, Romania; tel/fax: 021 3242590

Project leader: Dr. BOTEZATU ANCA, CSII

e-mail: gnanka30 @ yahoo.com

Research Team: Dr. Botezatu Anca CSII, Dr. Adriana Plesa CSII, Dr. Iancu Iulia Virginia CS III, Drd Fudulu Alina CS, Drd Albulescu Adrian CS

Total Budget: 431.900 lei

Abstract

Human papilloma viruses (HPVs) are non-enveloped double-stranded DNA genome viruses, divided according to oncogenic potential into low-risk (lrHPV) and high-risk (hrHPV) genotypes for which persistent infection is associated with cervical dysplasia and carcinogenesis. HPVs developed strategies to interfere with innate immune responses, to delay adaptive immune responses and thus to promote oncogenesis. Even if the HPV viral life cycle has been extensively studied, the regulatory proteins that influence viral chromatin and interactions of the viral DNA with complex nuclear structure in the infected cells are still under investigation. The proposal intends to unveil the mechanism of how hrHPV optimizes its own transcription in order to evade the intrinsic immune response being prone to use epigenetic mechanisms to regulate biological activities during virus life cycle. In this context, we hypothesize an association between HPV genome and chromatin remodeling complexes interaction that influences the early viral gene transcription. In order to highlight this we propose the following specific objectives: identifying ND10 components involved in chromatin remodeling complexes and histone chaperones during early viral infection using as experimental models infected human cell lines with HPV16/18 pseudovirions; establishing if ND10 complex has a role in intrinsic immune response in hrHPV infection; discovering the role of histone H3.3 in viral chromatin status during first stages of infection (HPV and ND10 co-localization); understanding which viral factors may play a role in regulation of ND10 chromatin remodelers, which may help the virus escape from intrinsic immunity mechanism. The obtained data will enrich the knowledge in the field of molecular biology and epigenetics of the HPV infection, which may represent a future challenge for developing new therapeutic targets and strategies in disease management. This may open new research direction for HPV–induced tumorigenes

 

Concrete objectives of the project

The proposal hypothesizes an association between HPV genome and chromatin remodeling complexes interaction that influences the early viral gene transcription. Given the lack of data in this field, the implementation of such hypothesis will bring essential information regarding the chromatin structure of viral genome and the influence of histone chaperones on cell chromatin during early HPV infection. The obtained data will enrich the knowledge in the field of molecular biology and epigenetics of the HPV infection, which may represent a future challenge for developing new therapeutic targets and strategies in disease management. This may open new research direction for HPV–induced tumorigenesis. For this purpose, the specific are as follow:

•           To identify ND10 components involved in chromatin remodeling (HDAC complexes) and histone chaperones during early viral infection using as experimental models infected human cell lines with HPV16/18 pseudovirions;

•           To establish if ND10 complex has a role in intrinsic immune response in hrHPV infection;

•           To ascertain the role of histone H3.3 in viral chromatin status during first stages of infection (HPV and ND10 co-localization);

•           To understand which viral factors may play a role in regulation of ND10 chromatin remodelers, which may help the virus escape from intrinsic immunity mechanism.

 

References

1.         Moody, C. A., & Laimins, L. A. (2010). Human papillomavirus oncoproteins: pathways to transformation. Nature Reviews Cancer, 10(8), 550. 

2.         Day, P. M., Baker, C. C., Lowy, D. R., & Schiller, J. T. (2004). Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proceedings of the National Academy of Sciences, 101(39), 14252-14257.

3.         Gautam, D., & Moody, C. A. (2016). Impact of the DNA damage response on human papillomavirus chromatin. PLoS pathogens,12(6), e1005613.

4.         Orzalli, M. H., & Knipe, D. M. (2014). Cellular sensing of viral DNA and viral evasion mechanisms. Annual review of microbiology, 68, 477-492.

5.         McBride, A. A. (2017). Oncogenic human papillomaviruses.Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1732), 20160273.

6.         Senapati, R., Senapati, N. N., & Dwibedi, B. (2016). Molecular mechanisms of HPV mediated neoplastic progression. Infectious agents and cáncer, 11(1), 59.

7.         Lang, M., Jegou, T., Chung, I., Richter, K., Münch, S., Udvarhelyi, A., ... & Rippe, K. (2010). Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci, 123(3), 392-400.

8.         Mito, Y., Henikoff, J. G., & Henikoff, S. (2005). Genome-scale profiling of histone H3. 3 replacement patterns. Nature genetics,37(10), 1090.

9.         Szenker, E., Ray-Gallet, D., & Almouzni, G. (2011). The double face of the histone variant H3. 3. Cell research, 21(3), 421.

10.       Snyers, L., Zupkovitz, G., Almeder, M., Fliesser, M., Stoisser, A., Weipoltshammer, K., & Schöfer, C. (2014). Distinct chromatin signature of histone H3 variant H3. 3 in human cells.Nucleus, 5(5), 449-461.

11.       Udugama, M., M. Chang, F. T., Chan, F. L., Tang, M. C., Pickett, H. A., R. McGhie, J. D., ... & Wong, L. H. (2015). Histone variant H3. 3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic acids research,43(21), 10227-10237.

12.       Placek, B. J., Huang, J., Kent, J. R., Dorsey, J., Rice, L., Fraser, N. W., & Berger, S. L. (2009). The histone variant H3. 3 regulates gene expression during lytic infection with herpes simplex virus type 1. Journal of virology, 83(3), 1416-1421.

13.       Nye, J., Melters, D. P., & Dalal, Y. (2018). The Art of War: harnessing the epigenome against cancer. F1000Research, 7.

14.       Goldberg, A. D., Banaszynski, L. A., Noh, K. M., Lewis, P. W., Elsaesser, S. J., Stadler, S., ... & Wen, D. (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 140(5), 678-691.

15.       Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C., & Allis, C. D. (2010). Daxx is an H3. 3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proceedings of the National Academy of Sciences, 107(32), 14075-14080.

16.       Li, H., Leo, C., Zhu, J., Wu, X., O'Neil, J., Park, E. J., & Chen, J. D. (2000). Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Molecular and cellular biology, 20(5), 1784-1796.

17.       Hollenbach, A. D., McPherson, C. J., Mientjes, E. J., Iyengar, R., & Grosveld, G. (2002). Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. Journal of cell science, 115(16), 3319-3330.

18.       Wu, W. S., Vallian, S., Seto, E., Yang, W. M., Edmondson, D., Roth, S., & Chang, K. S. (2001). The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Molecular and cellular biology, 21(7), 2259-2268.

19.       Puto, L. A., & Reed, J. C. (2008). Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes & development, 22(8), 998-1010.

20.       Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., ... & Minucci, S. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science, 295(5557), 1079-1082.

21.       Everett, R. D., & Chelbi-Alix, M. K. (2007). PML and PML nuclear bodies: implications in antiviral defence. Biochimie, 89(6-7), 819-830.

22.       Maul, G. G., Guldner, H. H., & Spivack, J. G. (1993). Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0).Journal of General Virology, 74(12), 2679-2690.

23.       Everett, R. D. (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene, 20(49), 7266.

24.       Maul, G. G. (1998). Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays, 20(8), 660-667.

25.       MAUL, G. G., ISHOV, A. M., & EVERETT, R. D. (1996). Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology, 217(1), 67-75.

26.       Everett, R. D., & Maul, G. G. (1994). HSV‐1 IE protein Vmw110 causes redistribution of PML. The EMBO journal, 13(21), 5062-5069.

27.       Day, P. M., Roden, R. B., Lowy, D. R., & Schiller, J. T. (1998). The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains.Journal of virology, 72(1), 142-150.

28.       Heino, P., Zhou, J., & Lambert, P. F. (2000). Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology, 276(2), 304-314.

29.       Florin, L., Schäfer, F., Sotlar, K., Streeck, R. E., & Sapp, M. (2002). Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology, 295(1), 97-107.

30.       Becker, K. A., Florin, L., Sapp, C., & Sapp, M. (2003). Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology,314(1), 161-167.

31.       Androphy, E. J., Lowy, D. R., & Schiller, J. T. (1987). Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature, 325(6099), 70.

32.       Nakahara, T., & Lambert, P. F. (2007). Induction of promyelocytic leukemia (PML) oncogenic domains (PODs) by papillomavirus. Virology, 366(2), 316-329.

33.       Kieback, E., & Müller, M. (2006). Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein. Virology, 345(1), 199-208.

34.       Swindle, C. S., Zou, N., Van Tine, B. A., Shaw, G. M., Engler, J. A., & Chow, L. T. (1999). Human papillomavirus DNA replication compartments in a transient DNA replication system. Journal of virology, 73(2), 1001-1009.

35.       Rogel-Gaillard, C., Pehau-Arnaudet, G., Breitburd, F., & Orth, G. (1993). Cytopathic effect in human papillomavirus type 1–Induced inclusion warts: In vitro analysis of the contribution of two forms of the viral E4 protein. Journal of investigative dermatology,101(6), 843-851.

36.       Roberts, S., Hillman, M. L., Knight, G. L., & Gallimore, P. H. (2003). The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. Journal of virology, 77(1), 673-684.

37.       Tavalai, N., & Stamminger, T. (2008). New insights into the role of the subnuclear structure ND10 for viral infection. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783(11), 2207-2221.

38.       Guccione, E., Massimi, P., Bernat, A., & Banks, L. (2002). Comparative analysis of the intracellular location of the high-and low-risk human papillomavirus oncoproteins. Virology, 293(1), 20-25.

39.       Bischof, O., Nacerddine, K., & Dejean, A. (2005). Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Molecular and cellular biology, 25(3), 1013-1024.

40.       Guccione, E., Lethbridge, K. J., Killick, N., Leppard, K. N., & Banks, L. (2004). HPV E6 proteins interact with specific PML isoforms and allow distinctions to be made between different POD structures. Oncogene, 23(27), 4662.

41.       Day, P. M., Baker, C. C., Lowy, D. R., & Schiller, J. T. (2004). Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proceedings of the National Academy of Sciences, 101(39), 14252-14257.

42.       Fujita, N., Jaye, D. L., Geigerman, C., Akyildiz, A., Mooney, M. R., Boss, J. M., & Wade, P. A. (2004). MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell, 119(1), 75-86.

43.       Kaji, K., Caballero, I. M., MacLeod, R., Nichols, J., Wilson, V. A., & Hendrich, B. (2006). The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature cell biology, 8(3), 285.

44.       Rais, Y., Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., ... & Maza, I. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 502(7469), 65.

45.       Yamada, T., Yang, Y., Hemberg, M., Yoshida, T., Cho, H. Y., Murphy, J. P., ... & Bonni, A. (2014). Promoter decommissioning by the NuRD chromatin remodeling complex triggers synaptic connectivity in the mammalian brain. Neuron, 83(1), 122-134.

46.       Kim, T. W., Kang, B. H., Jang, H., Kwak, S., Shin, J., Kim, H., ... & Kim, S. Y. (2015). Ctbp2 modulates NuRD‐mediated deacetylation of H3K27 and facilitates PRC2‐mediated H3K27me3 in active embryonic stem cell genes during exit from pluripotency. Stem Cells, 33(8), 2442-2455.

47.       Yang, Y., Yamada, T., Hill, K. K., Hemberg, M., Reddy, N. C., Cho, H. Y., ... & Medina, J. F. (2016). Chromatin remodeling inactivates activity genes and regulates neural coding. Science,353(6296), 300-305.

48.       Kraushaar, D. C., Chen, Z., Tang, Q., Cui, K., Zhang, J., & Zhao, K. (2018). The gene repressor complex NuRD interacts with the histone variant H3. 3 at promoters of active genes. Genome research, 28(11), 1646-1655.

49.       Lai, A. Y., & Wade, P. A. (2011). Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nature Reviews Cancer, 11(8), 588.

50.       Margueron, R., & Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330), 343.

51.       Ding, D. C., Chiang, M. H., Lai, H. C., Hsiung, C. A., Hsieh, C. Y., & Chu, T. Y. (2009). Methylation of the long control region of HPV16 is related to the severity of cervical neoplasia. European Journal of Obstetrics & Gynecology and Reproductive Biology,147(2), 215-220.

52.       Fernandez, A. F., Rosales, C., Lopez-Nieva, P., Graña, O., Ballestar, E., Ropero, S., ... & Pino, I. (2009). The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome research, 19(3), 438-451.

53.       Morey, L., Brenner, C., Fazi, F., Villa, R., Gutierrez, A., Buschbeck, M., ... & Di Croce, L. (2008). MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Molecular and cellular biology,28(19), 5912-5923.

54.       Villa, R., Pasini, D., Gutierrez, A., Morey, L., Occhionorelli, M., Viré, E., ... & Fuks, F. (2007). Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer cell, 11(6), 513-525.

55.       Oh ST, Longworth MS, Laimins LA. Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol. 2004 Mar;78(5):2620-6

 

 

RO EN